TRANSPORT MEANS

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

KAUNAS UNIVERSITY OF TECHNOLOGY
 IFTOMM NATIONAL COMMITTEE OF LITHUANIA SAE LITHUANIAN BRANCH
 THE DIVISION OF TECHNICAL SCIENCES
 OF LITHUANIAN ACADEMY OF SCIENCES
 KLAIPĖDA UNIVERSITY VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

TRANSPORT MEANS 2009

PROCEEDINGS OF THE $13^{\text {th }}$ INTERNATIONAL CONFERENCE

October 22 - 23, 2009
Kaunas University of Technology, Lithuania

Proceedings of $13^{\text {th }}$ International Conference. Transport Means. 2009

Analysis of Uncontrolled Crossing Passage Time

A. Ragauskaitè ${ }^{*}$, V. Bagdonas**, A. Sladkowski***

*Kaunas University of Technology, Studentu 48, 51367, Kaunas, Lithuania, E-mail: agnrag@yahoo.com

**Kaunas University of Technology, Studentu 48, 51367, Kaunas, Lithuania, E-mail: vaclovas.bagdonas@ktu.lt
***Silesian University of Technology, Krasinski str. 8, PL-40019, Poland, E-mail: aleksander.sladkovski@polsl.pl

Abstract

There are proposed the analytical model of two streets uncontrollable crossing passage time, which is founded on safe interval D_{1} between vehicles with espousal condition and assumption, when vehicles flow is simplest off interval D_{1} ranges. There are given probability formulas of vehicle stopping by crossing, formulas of middle time, whom vehicle delays letting comming automobiles from right go first, and condition formula of traffic jam formation.

KEY WORDS: uncontrollable crossing, passage time, analysis

1. Introduction

By way of regularizing parameters of city traffic flows and of fraffic infrastructure it's needed to solve problems of two types:

1) to conform streets and crossing throughputs to traffic regular flows intensities;
2) expeditiously to redistribute (correct) traffic flows intensities, if parameters of fraffic infrastructure (repair works, accidents and etc.) are temporarily varied.
Problems of first type are solving on statistical characteristics of traffic flows (source-purpose matrixes, actual intensities) grounds chosen number of outside lanes, installing traffic-light modes of „green wave", regulating duration of traffic-light phases and etc. Now these problems are successfully solving.

To solve problems of second type it's needed to know actual passage times of streets and crossings, expeditiously solve problem of traffic flow distribution in real time and to be able to realize founded results, that is expeditiously to divert vehicles for actuality in optimal routs. It is technically and theoretically complicated problem. The system structural scheme, which is needful to solve complicated problem, is affinity described in literature [1]. One of the basic subsystem of discussed system - dynamic (expeditiously renewable) database of street crossing passage time, which is backed up on ground of dimensional and prognosis data. Exactly for this pupose herein is needful under consideration analytical model of crossing passage time.

In this artical is restricted to analytical model of one lane crossing passage time of two streets (there are unvalueded cases of turning to left or right or round).

2. Models of traffic flows basic characteristics

Researches of crossing passage time are founded on formula (proposed in literature [1]) of safe interval D_{1} between front bumpers of adjacent and going along vehicles:

$$
\begin{equation*}
D_{1}=L(t)+l=1,8 v_{n+1}(t)+l . \tag{1}
\end{equation*}
$$

Here:
$L(t)$ - distance on time t between back bumper of previous vehicle and front bumper of follow-up vehicle [m];
l - average length of vehicle [m];
$v_{n+1}(t)$ - velocity of follow-up vehicle [m / s] on time t;
1,8 - coefficient containing time (seconds) dimension.
In analytical researches of traffic flows often are supposed that vehicles flow is simplest: stationary, ordinary and without interaction [2]. However, in reality such model is not completely adequate. It's due to the fact that vehicles flow is not flow without interaction: automobiles can not to come near one by other closer than safe distance D_{1} (Fig1).

Probability density function $\rho(x)$ of interval between adjacent and going along vehicles can be expressed by formula [3]:

$$
\rho(x)=\left\{\begin{array}{cr}
0, \text { when } & -D<x<0 \tag{2}\\
\lambda e^{-\lambda x}, \text { when } & x \geq 0
\end{array}\right.
$$

If N - density of vehicles (number of vehicles in one road kilometre), then medium interval Δ between next-door automobiles in traffic flow is:

$$
\begin{equation*}
\Delta=D_{1}+\int_{0}^{\infty} x \rho(x) d x=D_{1}+\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=D_{1}+\frac{1}{\lambda}=\frac{1}{N} \tag{3}
\end{equation*}
$$

Fig. 1. Probability density function of interval between adjacent and going along vehicles
Scheme of uncontrollable crossing of two streets with equal same traffic intensities is shown in Fig.2.

Fig. 2. Scheme of uncontrollable crossing of two streets with equal same traffic intensities
First of all is discussed state, when traffic is not intensive and there are no lines by crossing. Then, when automobile A_{1} (figure 2) comes to crossing, it‘s possible two situations:

1) obstacle from right (automobilis A_{2}) is enough far away and A_{1} can safely go by crossing;
2) automobile A_{2} is near and A_{1} must stop and let automobile A_{2} go first.

In both situations must be separated two cases:
$2-1$) when A_{2} is going directly or turning to left;
$2-2$) when A_{2} is turning to right.
When automobile A_{2} is enough far away, it must obtain specification:

$$
\begin{align*}
& \Delta_{1} \geq D_{1}+\delta+l, \text { on case } 2-1, \\
& \Delta_{1} \geq 2 D_{1}-\delta+l, \text { on case } 2-2 . \tag{4}
\end{align*}
$$

This specification means that while automobile A_{1} will go through crossing, A_{2} will not come closer than safe distance D_{1}.

Suppose that automobile A_{2} is near, when

$$
\begin{align*}
& \Delta_{1}<D_{1}+\delta+l, \text { on case } 2-1, \\
& \Delta_{1}<2 D_{1}-\delta+l, \text { on case } 2-2 . \tag{5}
\end{align*}
$$

This event probability

$$
\begin{equation*}
P_{s t}=\frac{\Delta_{1}}{\Delta} \tag{6}
\end{equation*}
$$

Middle crossing passage time

Middle crossing passage time $t_{1 L}$, whom automobile A_{1} will delay letting comming automobile from right go first.

When it's searching for this important characteristic, it's possible to talk about $t_{1 L}$ unconditional and conditional values.

Unconditional $t_{1 L-b}$ value includes all events, whereas and these, when automobile A_{1} passes the crossing immediately (don't need to let any go first).

Conditional $t_{1 L-s}$ value is counted only for such situations, when automobile A_{1} must stop and let automobile A_{2} go first, because otherwise condition (2) or (4) will be not be supplyed.

$$
\begin{equation*}
t_{1 L-b}=P_{t k}\left(t_{1 L-D_{1}-t k}+t_{1 L-\overline{D_{1}}-t k}\right)+P_{d}\left(t_{1 L-D_{1}-d}+t_{1 L-\overline{D_{1}}-d}\right)+P_{s t} \frac{v_{1}}{a} . \tag{7}
\end{equation*}
$$

Here:
a - stop and speed-up accelerations of automobile (it's supposed that these accelerations are equal in absolute value), and component $P_{s t} \frac{v_{1}}{a}$ is time, whom automobile delays in stopping and running up;
$P_{t k}$ - probability, that automobile coming from right purposes to go directly or turn to left;
P_{d} - probability, that automobile coming from right purposes to turn to right.
If vehicles flows distribute equally, then (without rotation events), $P_{t k}=2 / 3 ; P_{d}=1 / 3$;
$t_{1 L-D_{1}-t k}$ and $t_{1 L-\overline{D_{1}}-t k}$ - middle time, whom A_{1} will delay letting comming automobile from right go first, but with condition that the automobile goes directly or turns to left and when it‘s remaining to crossing further ($t_{1 L-D_{1}-t k}$) or near ($t_{1 L-\overline{D_{1}}-t k}$) than $\Delta_{1}-D_{1}$;
$t_{1 L-D_{1}-d}$ ir $t_{1 L-\overline{D_{1}}-d}$ - middle time, whom A_{1} will delay letting comming automobile from right go first, but with condition that the automobile turns to right and when it's remaining to crossing further ($t_{1 L-D_{1}-d}$) or near ($t_{1 L-\overline{D_{1}-d}}$) than $\Delta_{1}-D_{1}$.

$$
\begin{gather*}
t_{1 L-D_{1}-t k}=\frac{1}{v_{1}} \int_{-D_{1}}^{0}\left(\int_{0}^{\left(D_{1}+\delta+l\right)+x}(y-x) \lambda e^{-\lambda y} d y\right) N d x+P_{s t} \frac{v_{1}}{a}= \tag{8}\\
=\frac{N D_{1}}{\lambda v_{1}}+\frac{N D_{1}^{2}}{2 v_{1}}+N\left(D_{1}+\delta+l\right) e^{-\lambda\left(D_{1}+\delta+l\right)} \frac{1}{\lambda v_{1}}\left(1-e^{\lambda D_{1}}\right)+\frac{N}{\lambda^{2} v_{1}} e^{-\lambda\left(D_{1}+\delta+l\right)}\left(1-e^{\lambda D_{1}}\right) . \\
t_{1 L-\overline{D_{1}-t k}}=\frac{1}{v_{1}} \int_{0}^{\frac{1}{N}-D_{1}}\left(\int_{x}^{\left(D_{1}+\delta+l\right)+x}(y-x) \lambda e^{-\lambda y} d y\right) N d x+P_{s t} \frac{v_{1}}{a}=\frac{1-e^{-1}}{\lambda v_{1}}\left(\frac{N}{\lambda}-\left(N\left(D_{1}+\delta+l\right)+\frac{N}{\lambda}\right) e^{-\lambda\left(D_{1}+\delta+l\right)}\right) . \tag{9}\\
=\frac{N D_{1}}{\lambda v_{1}}+\frac{N D_{1}^{2}}{2 v_{1}}+N\left(2 D_{1}-\delta+l\right) e^{-\lambda\left(2 D_{1}-\delta+l\right)} \frac{1}{\lambda v_{1}}\left(1-e^{\lambda D_{1}}\right)+\frac{N}{\lambda^{2} v_{1}} e^{-\lambda\left(2 D_{1}-\delta+l\right)}\left(1-e^{\lambda D_{1}}\right) . \tag{10}\\
t_{1 L-D_{1}-d}= \\
t_{1}^{v_{1}} \int_{0}^{\frac{1}{N}-D_{1}}\left(\int_{x}^{\left(2 D_{1}-\delta+l\right)+x}(y-x) \lambda e^{-\lambda y} d y\right) N d x+P_{s t} \frac{v_{1}}{a}=\frac{1-e^{-1}}{\lambda v_{1}}\left(\frac{N}{\lambda}-\left(N\left(2 D_{1}-\delta+l\right)+\frac{N}{\lambda}\right) e^{-\lambda\left(2 D_{1}-\delta+l\right)}\right) . \tag{11}
\end{gather*}
$$

Conditional probability density $\rho\left(\left.x\right|_{\text {let_go_first }}\right)$, expressives of probability density of distance x to first automobile coming from right with condition that $x \leq \Delta_{1}$, can be expressed with formula:

$$
\rho\left(\left.x\right|_{\text {reikia_pralesti }}\right)=\rho\left(\left.x\right|_{R P}\right)=\left\{\begin{array}{ccc}
0 & \text { kai } & -D_{1}<x<0 ; \tag{12}\\
\frac{\lambda e^{-\lambda x}}{1-e^{-\lambda \Lambda_{1}}} & \text { kai } & x \geq 0 .
\end{array}\right.
$$

Conditional value of middle crossing passage time $t_{1 L-s}$ is computable by the same method as $t_{1 L-b}$, but instead probability density function (2) is using function of conditional probability density (12). Then:

$$
\begin{equation*}
t_{1 L-s}=P_{t k} \frac{1}{1-e^{-\lambda\left(D_{1}+\delta+1\right)}}\left(t_{1 L-D_{1}-k k}+t_{1 L-\overline{D_{1}-k}}\right)+P_{d} \frac{1}{1-e^{-\lambda\left(2 D_{1}-\delta+l\right)}}\left(t_{1 L-D_{1}-d}+t_{1 L-\overline{D_{1}-d}}\right)+\frac{v_{1}}{a} . \tag{13}
\end{equation*}
$$

Very important characteristic of traffic flow is middle time t_{L}, whom automobile A_{1} after stop delays waiting chance to go through crossing. This time is expressed by formula:

$$
\begin{equation*}
t_{L}=t_{1 L-s}+\sum_{j=1}^{\infty}\left(P_{s k}\right)^{j} t_{v} . \tag{14}
\end{equation*}
$$

Here
$P_{s k}$ - probability, that when ordinary (k) vehicle passes from right, automobile A_{1} will have no chance (because of ordinary automobile coming from right) to go through crossing;
t_{v} - middle value of time, measured between passage moments of previous and follow-up vehicles.
First component in formula (14) means middle time, whom automobile A_{1} approached crossig will delay letting automobile A_{2} coming from right go first.

Every next component in formula (14) means, that automobile A_{1} will have wait till one more automobile will pass on contrariwise traffic line.

On the ground of formula (1) and distribution law (2), probability $P_{s k}$ can be expressed by formula:

$$
\begin{equation*}
P_{s k}=1-e^{-\lambda S_{s t o}}, \quad S_{s t o}=v_{1} \sqrt{\frac{2(\delta+l)}{a}} \tag{15}
\end{equation*}
$$

Time t_{v} is topical for automobile, which can not go through crossing even when it lets automobile coming from right go first. That's why it's needed just conditional value of this time, wherefore function of conditional probability density $\rho\left(\left.x\right|_{N L}\right)$ is using in formulas.

$$
\begin{equation*}
t_{v}=\frac{D_{1}}{v_{1}}+\frac{1}{v_{1}\left(1-e^{-\lambda S_{s o s}}\right)} \int_{0}^{S_{v o}} x \lambda e^{-\lambda x} d x=\frac{D_{1}}{v_{1}}+\frac{1-e^{-\lambda S_{s o t}}\left(1+\lambda S_{s t o}\right)}{\lambda v_{1}\left(1-e^{-\lambda S_{s o t}}\right)} . \tag{16}
\end{equation*}
$$

By means of sum formula of members of infinite descending geometrical progression and sumed up (15), formula (14) assumes easier form for counts:

$$
\begin{equation*}
t_{L}=t_{1 L-s}+\frac{t_{v}}{1-P_{s k}}=t_{1 L-s}+t_{v}\left(e^{\lambda_{s s o}}-1\right) . \tag{17}
\end{equation*}
$$

The middle time Σt_{L}, whom first by crossing stopped automobile delays going through it, is expressed by formula:

$$
\begin{equation*}
\Sigma t_{L}=P_{s t} t_{L} . \tag{18}
\end{equation*}
$$

It's no trouble to count that (if traffic intensity is $I=N v_{1}[t p / s]$ in research direction) further $N v_{1} t_{L}$ vehicles will approach crossing during time t_{L}.

Thus if

$$
\begin{equation*}
N v_{1} t_{L}>1, \tag{19}
\end{equation*}
$$

then jam of automobiles develops by crossing.

3. Conclusions

Analytical models of crossing passage time make assumptions to solve problems of street passage time. When velocity of traffic flow is reducing, then crossing middle passage time is shortening.

References

1. Daunoras J., Bagdonas V., Gargasas V., City Transport Monitoring and Routes Optimal Management System // Transport, Vilnius: Technika, 2008, 23 (2): 144-149.
2. Vandaele N., Van Woensel T.,; Verbruggen A., A Queueing based Traffic Flow Model. Transportation Research - D: Transport and environment. January 2000, vol. 5 nr 2, pp 121-135.
3. Petrauskaitè E., Simulation of Car Passing Processes in one Lane Street // Electrical and Control Technologies 2009 : papers of the international conference, 7-8 May 2009, Kaunas, Lithuania. p. 9-12.

Contents

Preface
M. Bogdevičius, V.Vansauskas, Dynamic Behaviors of an Automobile on the Road Pavement with Ruts
Z. Vintr, Prediction of Combat Vehicle AvailabilityZ. Vintr, Armored Vehicle Flotation
S. Šinkūnas, A. Kiela, Variation of Shear Stress in the Entrance Region of Gravity Driven Liquid FilmFlow
L. Raslavičius, Ž. Bazaras, A. K. Kopeyka, Research Into Be-Diesel Motor Characteristics Under on- Field Conditions
H. Pranevičius, T. Kraujalis, Piece Linear Aggregates Model for Fuzzy Traffic Control 25
J. Furch, Design of Operational Vehicle Maintenance Programme 30
J. Mikalauskas, V. Bagdonas, Analysis an Improvement of Car Following Models 35
A. Ragauskaitè, V. Bagdonas, A. Sladkowski, Analysis of Uncontrolled Crossing Passage Time 39
J. Stodola, P. Stodola, Virtual Design of Ground Armored Vehicle 43
A.Baublys, A Model of the Development of Private Freight Road Transport 47
V. Paulauskas, D. Paulauskas, C. M. Steenberg, Navigational Support in the Port Entrance 51
V.Paulauskas, Emergency Quay Walls for Evaluation of Temporary Activity 55
V. Lukauskas, B. Plačienė, R.Barzdžiukas, Delivery Term Impact on Ship Repair Costs 59
M. Jonkus, R.Maksimavičius, B.Plačienė, H.H.Pedersen, Competitive Advantage of Shortsea Shipping 62
A. Maniachin, I. Agafonov, V. Korotkov, Pirates of the $21^{\text {st }}$ Age and the Effect on Maritime Economy 65
V. Senčila, A. Alop, Investigation of Lithuanian Seafarers’ Staff and its Recent Changes Tendencies 69
V. Senčila, G.Kalvaitienė, K. Pukelis, Investigation of Predictive Age Profile Model and Forecasting of 73Future Lithuanian Marine Officers Staff
B. Leitner, J. Uríček, Adaptive Autoregressive Moving Average Models and Its Possibilities for Identification and Control of Machines Dynamic Systems
B. Leitner, J. Máca, A New Approach to the Analysis of Non-Stationary Random Vibrations of Railway Vehicles
V. Sadauskas, Mandatory Vehicles' Technical Inspection System in Lithuania: Present and Prospects87
M. Dub, R. Jalovecký , Possibilities of Flight Data Online Processing 91
R.Jalovecky, J.Cizmar, The New Conception of the Aircraft Digital Capacitive Fuel Indicator 95
V. Naginevičius, V. Speičys, J. Avotins, Vibratory Distribution Nozzle 99
A. Vasilis Vasiliauskas, D. Bazaras, J. Barysienė, Analysis of Intermodal Transportation by Lithuanian 104

