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USING THE LIGHTWEIGHT YOLOV8 SYSTEM FOR VISUAL 
DETECTION, LOGISTICS PACKAGE GRASPING, AND AUTONOMOUS 
NAVIGATION FOR MOBILE MANIPULATORS 

 
Summary. In recent years, the global industrial production and manufacturing paradigm 

from mass production has continued to shift to customized production. Enterprise order 
processing is also increasingly showing strong timeliness, variety, small batch, and batch 
characteristics. The market demand for highly flexible robotic automated production lines is 
also continuing to grow. Mobile manipulator is a new type of robot that integrates two 
functions of mobile robots and robotic arms, which can plan routes, navigate accurately, avoid 
obstacles, and identify, sort, grasp, and transport items. It is widely used in logistics and 
warehousing, factories, indoor exhibition halls, etc., which can save the cost of manpower, 
improve efficiency, and create differentiated competitiveness. Despite its promising 
application, it also faces some problems, especially in the cooperative operation of the mobile 
platform and robotic arm. Understanding how to realize vision-based target intelligent 
recognition and grasping is still a current research challenge. In this paper, we build a mobile 
manipulator platform, deploy and verify a YOLOv8n-SCS-CE lightweight detection network 
proposed in the previous stage (which can detect common logistics parcels), and test the 
robot’s autonomous mobile grasping of parcels and autonomously navigating to the target 
place. The test demonstrates that it can utilize the improved YOLOv8 to achieve intelligent 
grasping and autonomous navigation, thereby solving the challenges of intelligent grasping 
and autonomous transportation for indoor mobile manipulators. This study provides key 
technologies and methodologies for the intelligent grasping and manipulation capabilities of 
mobile manipulators. 

 
 

1. INTRODUCTION 
 

A mobile manipulator, a highly flexible robot with multi-scene adaptability, typically consists of a 
vision sensing module, a multi-axis robotic arm, a mobile platform, and an end-effector. This system 
enables object recognition, inspection, grasping, and other task-specific functions. Its core technological 
architecture integrates artificial intelligence, mobile manipulation, sensor fusion, and 
localization/navigation technologies [1-3]. 

The research and development of mobile manipulators began abroad earlier, resulting in relatively 
mature technologies. Notable international examples include the PR2 robot developed by Willow 
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Garage (USA); HERB, developed by Intel Pittsburgh Lab and Carnegie Mellon University; the Fetch 
robot by Fetch Robotics (USA); Stretch, Boston Dynamics’ mobile warehouse automation solution; and 
KUKA’s (Germany) KMR iiwa robot for mission-critical industrial applications. Although China 
started later in this field than other countries, progress has been rapid. Key domestic brands include 
HSCR5, China’s first intelligent hybrid collaborative robot, launched by Shenyang Siasun Co., Ltd; 
Daystar robot, independently developed by Lenovo Corporation; STAR robot, developed by Shenzhen 
Han’s Robot Co., Ltd; and Scara hybrid robot by RobotPhoenix LLC. These mobile manipulators can 
be applied across various fields, including logistics and warehousing, electronics manufacturing, food 
processing, and pharmaceutical production [4-6]. 

Composite mobile robots have a broad application prospect, but they also face some problems. 
Substantial research has been carried out internationally on fixed robotic arm visual grasping 
technology, YOLO detection network algorithms, and autonomous navigation of mobile robots [7-11]. 
However, these studies have primarily focused on aspects such as the lightweight design of YOLO 
algorithms, the visual grasping for robotic arms, autonomous navigation, and collaborative control. 
There remains insufficient research on integrated YOLO-based visual grasping and navigation control 
for mobile manipulators as a complete system. In particular, several technical challenges and bottlenecks 
persist in areas like lightweight YOLO recognition algorithms, eye-hand coordinated grasping, and 
autonomous navigation control [12, 13]. Achieving vision-based efficient target recognition, 
autonomous mobile grasping, and intelligent navigation for mobile manipulators remain a current 
research hotspot.  

To address these challenges, this study develops a mobile manipulator platform that combines 
advanced perception, manipulation, and navigation capabilities. Using the detection and grasping of 
common logistics box-shaped parcels as a case study, the platform integrates three key technological 
components: our previously developed lightweight YOLOv8n-SCS-CE detection algorithm [14] for 
robust object recognition; a vision-guided robotic arm grasping system for precise manipulation; and 
LiDAR-based autonomous navigation technology for environment-aware mobility. The synergistic 
combination of these technologies provides a practical solution for logistics automation applications 
requiring both precise manipulation and mobile transportation capabilities. 

 
 

2. CONSTRUCTION OF A MOBILE MANIPULATOR EXPERIMENTAL PLATFORM 
 

2.1. Components of the Test Platform 
 

The mobile manipulator platform depicted in Fig. 1 has been developed to meet the needs of indoor, 
warehousing and logistics fields, overcome the limitations of traditional fixed-base robots and mobile 
AGV platforms, and improve the flexibility, safety and reliability of a variety of processes. The 
experimental platform comprises the following core components: a circular indoor intelligent mobile 
base (SHANSU Intelligence Co., Ltd.), an FR5 collaborative robotic manipulator (FAIR Innovation 
Robot Systems, Suzhou), a two-finger parallel gripper (DaHuan Co., Ltd.), an Intel RealSense D435i 
RGB-D camera, and a 2D LiDAR sensor. The platform measures 700×545×500 mm (L×W×H), and it 
integrates a six-axis robotic arm with a 922-mm workspace, complemented by an autonomously 
navigating chassis. Its ROS-based control system offers extensive sensor interfaces and API options to 
streamline secondary development and system integration. 
（1） Collaborative Robot Arm 

The FAIR FR5 collaborative robot from the FR series was selected for this application. This system 
features an integrated robot button box and compact control box, offering an extensive working envelope 
within a minimal footprint. Its compatibility with diverse end-effectors and sensor packages ensures 
optimal adaptability to meet all project specifications. The FR5 robotic arm utilizes the frcobot_ros 
software package to create a TCP client-server communication channel with the robot’s state feedback 
system. This implementation facilitates the continuous real-time data acquisition of the robot’s 
operational status parameters. The FR5 features a 5-kg payload capacity, a total weight of 20.6 kg, and 
an exceptional ±0.03-mm repeatability. 
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（2） Autonomous Mobile Platform 

The mobile robot chassis from SHANSU Intelligence was selected; this system integrates multiple 
sensors to facilitate environment perception and autonomous navigation. The system incorporates the 
WLR-716-Mini, a high-precision 2D LiDAR, primarily employed for environmental mapping, obstacle 
detection, and simultaneous localization and mapping (SLAM) applications. The IMU Brick 2.0 is a 
high-performance inertial measurement unit (IMU) that integrates a three-axis accelerometer, 
magnetometer (e-compass), and gyroscope, capable of measuring motion in nine degrees of freedom. 
The mobile chassis adopts two-wheel differential speed, built-in odometer, LIDAR and IMU, with high-
precision environment sensing, motion state monitoring, and autonomous navigation capability for the 
mobile manipulator. 

 
Fig. 1. Composition of mobile manipulator 

 
（3） Intel RealSense D435 Camera 

The Intel RealSense D435 binocular stereo camera was chosen to process color images, recognize, 
and (stereo vision) compute depth information, and the associated driver ROS package was provided. 
As shown in Fig. 2, its forward sensing array is distributed in a horizontal line configuration as follows: 
the first and third from the left are infrared sensors (IR stereo camera), the second from the left is an 
infrared projector, and the fourth from the left is a color camera (i.e., a color sensor). 

 

 
Fig. 2. Intel RealSense D435 camera 

 
（4） End Effector 

The DaHuan AG95 articulated adaptive electric two-finger gripper was selected for its robotic arm 
compatibility. Its compact structural design enables adaptive grasping of workpieces with varying 
geometries, ensuring stable manipulation of diverse objects. AG95 has the features of plug-and-play, 
drive, and control as a high-precision adjustable gripping force, double gripper control, interchangeable 
fingertips, fast installation, etc., and was combined with the robotic arm FR5 to enhance the flexibility 
of the gripping system. 

 
2.2. Overall Design of Control System 
 

The experimental platform operates on an Ubuntu 20.04 LTS environment with ROS Noetic 
framework integration. System control is centralized through an industrial-grade mini-PC, which 
orchestrates all hardware modules via unified coordination and real-time scheduling protocols. The 
primary development languages are C++ and Python. The platform system architecture encapsulates 
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various functional units, including the robotic arm, depth camera, LiDAR, Gmapping module, and end 
effector, as independent ROS nodes seamlessly integrated into the robot’s Ubuntu operating 
environment. These nodes communicate via ROS topics to receive information, which is then converted 
into hardware commands to ultimately drive the robotic arm in executing target tasks.  

The system employs multiple communication protocols to enable efficient inter-module 
coordination. The chassis differential motor communicates with the main control system through CAN 
bus to realize the motion control and state feedback of the chassis. the robotic arm adopts Ethernet 
(TCP/IP) communication to support high-frequency control and precise positioning. The gripper 
interacts with the main control system through the serial port for grasping and releasing. Environmental 
perception is achieved through an Intel RealSense D435 RGB-D camera, interfaced via USB 3.0 Gen 1, 
providing registered color-depth image pairs and dense 3D point clouds. These hardware modules are 
encapsulated as independent nodes in the ROS noetic system, and each node exchanges data and 
transmits control instructions through topics, etc. The master control system uniformly manages the 
collaborative scheduling of all the hardware to realize the intelligent operation of the robot. The overall 
control system is shown in Fig. 3. 

 

 
Fig. 3. Composition of the overall control system 

 
3. KEY TECHNOLOGIES FOR THE MOBILE GRASPING OF MOBILE MANIPULATORS 

 
The mobile grasping capability of a mobile manipulator combines the precision grasping of a 

robotic arm with the mobility provided by a mobile chassis. This integration primarily encompasses 
several key aspects: a YOLO lightweight target detection network, visual calibration, and autonomous 
navigation (SLAM). 

 
3.1. YOLOv8n-SCS-CE Lightweight Detection Algorithm 
 

YOLOv8, when used in warehouse logistics field detection, requires a large target detection model 
and computational complexity, thus leading to a large amount of computation, resulting in a slow 
operation speed, which makes it difficult to meet the demand for deployment in embedded or mobile 
devices. The authors of this paper have previously proposed a YOLOv8n-SCS-CE target detection 
algorithm, which improves the model feature extraction capability while maintaining a low 
computational complexity. Its network structure is shown in Fig. 4, with the changes mainly 
concentrated in the backbone part and neck parts, which are mainly used for detecting common logistics 
packages [15]. 

In the backbone network part, conventional convolution is first used to capture the initial spatial 
features and downsample the feature maps, and then the proposed SCS network structure is introduced 
to optimize the data flow method and improve the computational efficiency through the strategies of 
channel equalization, optimization of channel shuffle, reducing the amount of 1×1 convolutional 
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computation, and reducing the cost of memory access. Through these optimizations, the SCS structure 
effectively reduces the computational burden of the YOLOv8 backbone network. In the neck part, the 
C2f module of the original YOLOv8 is replaced by the C2f_ECA module, which further improves the 
feature extraction capability while controlling computational complexity. The main optimization points 
of C2f_ECA include the incorporation of efficient channel attention, which avoids additional 
computational burdens while improving the feature selection capability through local cross-channel 
information interactions compared to the traditional CBAM or SE attention mechanisms. 
 

 
Fig. 4. YOLOv8n-SCS-CE lightweight detection network 

 
3.2. Robotic Eye-on-Hand Calibration 
 
3.2.1. Camera Intrinsic Calibration 

 
First, the depth camera is fixed on the end rotary joint of the robotic arm to ensure that the 

coordinate system of the camera to acquire data can be consistent with the default coordinate system 
direction of the actuator at the end of the robotic arm to facilitate the coordinate transformation between 
the camera and the robotic arm. Then, the camera is activated to acquire the image-aligned RGB scene 
and depth map. 

This experiment uses MATLAB’s own toolbox (Camera Calibrator) for calibration, the advantages 
of which are the accuracy of the calibration and the simplicity of the operation process in practice. We 
employed a 12×8 checkerboard grid (comprising 11×7 internal corner points) as the calibration target, 
with each square measuring 25 mm × 25 mm. The board was rotated while keeping the camera stationary 
to capture a sufficient number of images. A total of 80 groups of images were collected for the same 
calibration plate in different attitudes, and the camera was calibrated by importing these images into 
MATLAB and extracting the corner points of the images using Camera Calibrator. During the 
calibration process, the system calculates the average calibration error for the left and right images, as 
well as the simulated attitude between the camera and the calibration target. Images with large errors 
are then removed, leaving 40 valid image pairs. This information can be visualized graphically, as shown 
in Figs. 5 and 6. 

The end of calibration yields the camera intrinsic matrix [607.9263 0 0; 0 607.4232 0; 315.0026 
251.6894 1.0000], the translation vector of principal point coordinates [-88.0890 -184.4831 608.3623], 
and the rotation matrix [0.9988 -0.0406 -0.0290; 0.0405 0.9992 -0.0022; 0.0291 0.0011 0.9996]. 
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Fig. 5. Reprojection errors 

 
Fig. 6. Pose and spatial position of calibration board 
 
3.2.2. Eye-on-Hand Calibration 
 

Hand-eye calibration experiments are used in robotics and computer vision to determine the 
transformation between a robot’s end-effector and a camera mounted on it. This calibration is crucial 
for tasks like visual servoing and object manipulation. 

Let the transformation from the camera coordinate system to the joint coordinate system at the end 
of the robotic arm be 𝑇!"#"$# , the transformation from the joint end coordinate system to the base 
coordinate system be 𝑇"$#%"&', and the position of the object in the camera coordinate system be 𝑃𝑜𝑠𝑒!"#. 
Then, the position of the object in the base coordinate system can be obtained as 

𝑃𝑜𝑠𝑒%"&' = 𝑇"$#%"&' ∗ 𝑇!"#"$# ∗ 𝑃𝑜𝑠𝑒!"#   .                                         (1) 
During calibration, to keep the object’s pose unchanged, the robot arm’s base is not moved, that 

𝑃𝑜𝑠𝑒%"&' remains unchanged. In order to ensure the calibration effect, n groups of poses are generally 
selected for calibration, from which n position and orientation transformation relations can be derived 

𝑃𝑜𝑠𝑒%"&'! = 𝑇"$#!
%"&' ∗ 𝑇!"#"$# ∗ 𝑃𝑜𝑠𝑒!"#! 							(𝑛 = 1,2, … , 𝑛)                     (2) 

where 𝑇"$#%"&'  can be acquired using the robot’s teaching pendant, 𝑃𝑜𝑠𝑒!"#  can be obtained by the 
camera calibration, and 𝑇!"#"$# is an unknown transformation to be solved, but it remains constant across 
all n positions during hand-eye calibration. Based on this condition, it is possible to obtain Eq. (3): 

𝑇"$#"
%"&' ∗ 𝑇!"#"$# ∗ 𝑃𝑜𝑠𝑒!"#" =. . . = 𝑇"$#!

%"&' ∗ 𝑇!"#"$# ∗ 𝑃𝑜𝑠𝑒!"#!                    (3) 
Any set of equations can be transformed to obtain the equation that 

𝑇"$##
%"&' () ∗ 𝑇"$#"

%"&' ∗ 𝑇!"#"$# =. . . = 𝑇!"#"$# ∗ 𝑃𝑜𝑠𝑒!"## ∗ 𝑃𝑜𝑠𝑒!"#"
()                     (4) 

Let 𝐴 = 𝑇"$##
%"&' () ∗ 𝑇"$#"

%"&' , 𝐵 = 𝑃𝑜𝑠𝑒!"## ∗ 𝑃𝑜𝑠𝑒!"#"
()，𝑋 = 𝑇!"#"$#. Then, we get AX=XB,  

where both A and B are known, solving for the unknown transformation X. Hand-eye calibration is 
performed using MATLAB’s built-in Camera Calibrator toolbox. To ensure calibration accuracy, the 
calibration plate remained stationary within the camera’s field of view throughout the process. The 
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robotic arm is systematically repositioned to capture 15 distinct image sets, optimizing pose coverage 
for robust parameter estimation. This multi-image acquisition strategy enhances calibration precision by 
mitigating measurement noise and improving spatial constraint resolution. The experimental setup is 
illustrated in Fig. 7. 

 
Fig. 7. Eye-on-hand calibration 
 

Here are several professionally refined versions of the hand-eye calibration results presentation: 
rotation matrix R=[0.9774 0.2073 0.0422; -0.1993 0.9691 -0.1451; -0.0710 0.1334 0.9885]; translation 
vector t=[-72.8437 -5.9962 586.1100] (units: mm). 

After the arm hand-eye calibration, according to the obtained rotation matrix and translation vector, 
which can be deduced from the coordinate transformation matrix, the main program publishes 
coordinate system conversion, converting the object to the camera coordinates, and then to the object to 
the robot arm coordinates, enabling the robot arm to grasp the object. 

 
3.3. Autonomous Navigation via Gmapping SLAM 
 

Gmapping SLAM map construction for a mobile chassis requires LiDAR, odometer, IMU, etc. 
Gmapping is a SLAM algorithm based on 2D LiDAR using the Rao-Blackwellized particle filters 
(RBPF) algorithm to complete 2D raster map construction. Its core problem is that it struggles with 
simultaneous robot position estimation and environment map construction. Accurate position estimation 
relies on high-quality maps, while high-quality map construction relies on accurate position estimation, 
making SLAM a complex computational problem. Gmapping shows the advantages of high 
computational efficiency, stable accuracy, and a lower requirement for LIDAR frequency in small-scale 
environments. 

Fig. 8 shows the autonomous navigation experimental environment, which uses a virtual machine 
to remotely log in to the host computer of the robot; open the LiDAR node, mobile chassis drive node, 
and odometer node; run the Gmapping map building node; and run the Rviz visual interface, which can 
be viewed in real time during the map building process. The user can use the handle to move the robot 
slowly to complete the construction of the map of the entire environment and then save the map. When 
autonomous navigation is required, the navigation node needs to be turned on, the built map file needs 
to be loaded, and Rviz needs to be opened on the local machine. The 2D Pose Estimate is used to adjust 
the initial pose to the initial position of the mobile manipulator in the field at this time, with the arrow 
pointing in the direction of the robot’s x direction. Ensure that the laser scanning obstacle data and the 
map obstacles basically coincide, use 2D Nav Goal to set the target point and target posture for robot 
navigation, and the robot will automatically plan a feasible path to move to the target point 
autonomously. 
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Fig. 8. Mapping and map loading tests 

 
4. MOBILE MANIPULATOR PROGRAMMING FRAMEWORK DESIGN 
 

The mobile manipulator was developed on the UBUNTU 20.04 operating system with ROS Noetic, 
a widely used open-source framework that provides integrated communication mechanisms, tool 
packages, and other essential functionalities for robotics development. The system implementation 
employs C++ and Python as primary programming languages, with the mobile chassis and FR5 robotic 
arm control functions developed using the ROS MoveIt framework. As shown in Fig. 9, all SRC source 
files within the catkin package are fully accessible and modifiable through VS Code. 

The architecture incorporates multiple customized ROS packages (Fig. 10) organized into 10 core 
functional modules: (1) battery management system’ (2) gripper modeling and control subsystem’ (3) 
robotic arm driver for hardware communication and operations’ (4) mobile chassis 3D modeling and 
navigation control package’ (5) pointcloud_grasp application layer (containing move_group.cpp and 
detect.py)’ (6) RGB-D camera driver with integrated calibration parameters’ (7) ROS-control hardware 
interface simulator and templates’ (8) LiDAR driver package and SDK’ (9) custom communication 
packages (topics/messages/actions)’ and (10) IMU driver package and SDK. This modular design 
ensured robust system integration while maintaining flexibility for future enhancements. 
 
4.1. Autonomous Mobile Grasping Program Design for the Mobile Manipulator 
 

The mobile grasping test of a mobile manipulator involves the cooperative operation of multiple 
functional nodes to realize the detection, path planning, and grasping operation of target objects. This 
subsection mainly introduces the program development of the move_group node. The move_group node 
relies on the MoveIt motion planning framework, which can realize the functions of path planning, path 
execution, inverse kinematics and Cartesian path. Its main program, move_group.cpp, needs to 
introduce header files and initialize robotic arm control parameters. To implement mobile grasping 
capabilities, the user defines a C++ grasp_demo class for encapsulating the complete grasping pipeline. 
This object-oriented design provides a clean interface for programmatic control of the grasping process. 
In C++, the grasp_demo class contains some member functions and variables, of which the class 
constructor is as follows: 

grasp_demo::grasp_demo (ros: NodeHandle &nh):move_group_(PLANNING_GROUP). 
In the grasp_demo class, where the armGrasp() function is used to execute the complete grasp 

process (as shown in Fig. 10), the grasp_demo class contains the following core variables and functions: 
(1) ros: init(argc, argv, arm_grasp_demo): initialization function, where argc indicates the number 

of parameters, argv indicates the parameter list, and arm_grasp_demo indicates the ROS node name; 
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(2) ros: NodeHandle nh: create ROS handle, nh is responsible for managing ROS network 
communication, such as topic subscription and publication; 

(3) ros: AsyncSpinner(4): create an asynchronous callback manager and allocate 4 threads for 
processing ROS callback functions to improve system responsiveness; 

(4) spinner.start(): start the callback processing to ensure uninterrupted message delivery; 
(5) gototarget(nav_goal): set the robot’s autonomous navigation goal to ensure that it moves to the 

grasping position; 
(6) armGrasp(): responsible for executing target detection, robot arm motion planning, grasping 

and placing operations. 
The main logic of the main program mainly includes the steps of ROS node initialization, 

asynchronous callback processing, autonomous navigation, and grasping execution, as shown in Fig. 11. 
 

 
Fig. 9. ROS source (SRC) files in VS Code 
 

 
Fig. 10. Design of a grasping class in C++ 



122                                                                                         X. Wang, C. Wang, A. Sładkowski, K. Gao 

 

 
 
Fig. 11. Main control architecture for move_group.cpp 
 
4.2. Design of Lightweight YOLOv8 Network Target Detection System 
 

 
 
Fig. 12. Improved lightweight YOLOv8 model for parcel detection 
 

 
 
Fig. 13. Robot system subscribes to YOLO topic data 

 
(1) Install a VMware virtual machine on a laptop, allocate 8G of memory to the virtual machine, 

and set 40G of disk capacity. To install Ubuntu20.04, ROS noetic version, the deployment of YOLO 
into the need to install Anaconda, create virtual environments, install UItralytics and PyTorch libraries. 
Next, install ROS-related dependencies, such as the dependency libraries installed by rospkg, etc., to 
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ensure that the trained weights can be deployed and used in the ROS environment. For the robot’s main 
controller, a laptop serves as an edge device to process real-time YOLO-based image detection 
algorithms. 

(2) Store the pre-trained weights file into the ROS workspace and name it best.pt. Write a ROS 
node to call the YOLOv8 lightweight model for inference. Publish image messages from the depth 
camera to ROS for topic communication. First, subscribe to the /camera/image_raw topic to get real-
time images. After processing, the /yolo_detections topic is published to send the detected target 
coordinates to the robot control system, which subscribes to the /yolo_detections topic to parse the 
detected target position and plan the grasping. 

(3) Open the demo_hardware.launch file in the function package fr5_moveit_config so that the 
mobile manipulator can be launched, and under the workspace launch the rs_rgbd. launch camera node 
of the realsense2_camera function package; the dh_gripper_driver function package’s dh_gripper. 
launch node; the pointcloud_grasp package’s move_group_demo node and color_detect.launch node. 
As shown in Figs. 12 and 13, after starting the corresponding nodes and loading the detection model, 
the remote VM successfully runs the YOLOv8n-SCS-CE lightweight detection algorithm after two-way 
topic communication, and the master and slave detect the target parcel in real time. 

 
 

5. COMPREHENSIVE EXPERIMENT OF MOBILE GRASPING AND AUTONOMOUS  
NAVIGATION 

 
Fig. 14. Visual grasping pipeline for target objects 

 
The target parcel recognition and grasping test procedure (Fig. 14) operates as follows. First, the 

system acquires aligned RGB and depth images via the depth camera, then publishes the visual 
calibration parameters through a TF-generated .yaml file. It subsequently calculates the target object’s 
centroid coordinates derived from RGB, depth value, and rotational orientation. These parameters are 
processed by the programmable move_group interface, which leverages MoveIt for kinematic motion 
planning. Finally, the planned trajectory is executed via ROS control, guiding the robotic arm’s end-
effector to the designated grasp pose. 

 
5.1. Mobile Manipulator Grasp Tests 

 
The purpose of the tests was to evaluate the mobile grasping performance of the mobile 

manipulator. The remote virtual machine subscribed to the camera image topic published by the host, 
while simultaneously activating the lightweight YOLOv8 detection node. After image processing, the 
robot host received the target detection results output by the lightweight YOLOv8 node on the virtual 
machine via the topic. For each detected target package, the center coordinates (x, y) of the bounding 
box were extracted, and the rotation angle of the gripper was determined based on the principal axis 
direction of the box-shaped package in the image. The pixel coordinates of the target’s center point were 
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read to obtain the corresponding depth value z in the depth map; in this way, the complete spatial position 
(x, y, z) of the target needed to construct the grasping information was acquired. In the move_group 
program, the target points for mobile grasping—including the initial pose, recognition pose, grasping 
pose, placement pose, and final pose—were predefined. During the mobile grasping process, the robot 
automatically planned its path and moved according to the preset navigation points. 

Small box-shaped packages were selected to validate the mobile manipulator’s grasping 
performance. The image resolution during the grasping process was set to an image resolution of 
640×480. The gripper’s control function was configured with a position value of 950, a grip force of 
100, and a speed set to the maximum range of 100 in the registers. 

The robot’s camera node was activated to capture real-time images, and a pre-trained weight model 
was used for object detection. The detection results, combined with the 3D coordinates obtained from 
depth information, were transmitted to the robot control system via the tf_package. After completing 
the grasping task, the robot moved to the designated placement location and then returned to its initial 
position. In this study, the target grasping process was simplified to a 2D planar grasping problem. 
Throughout the experiment, the camera remained within the optimal viewing range of the box-shaped 
package, and the gripper performed the grasping operation vertically from above. The experimental 
process is illustrated in Fig. 15. 

 

 
Fig. 15. Vision-based mobile manipulation for parcel grasping 

 
Due to the lack of GPU acceleration support on the virtual machine, the system exhibited 

suboptimal real-time performance, achieving a grasping success rate of 66%. Subsequent studies will 
employ higher-computing-capacity devices for validation and analysis. 
 
5.2. Autonomous Navigation Testing Using Gmapping SLAM 
 

The mobile robot utilized a LiDAR, odometry, and IMU sensors, employing the particle filter-
based SLAM algorithm to construct a 2D grid map from collected laser scans and pose relationship data. 
In ROS, move_base served as the core node for autonomous navigation, integrating both global and 
local path planning to enable self-guided robot movement. During autonomous navigation, the global 
costmap facilitated global path planning by computing an optimal route from the starting point to the 
target within the known map. It avoided static obstacles while minimizing travel distance. The local 
costmap handled local path planning by dynamically detecting real-time environmental changes (e.g., 
moving obstacles). It continuously adjusted the trajectory during execution to ensure obstacle avoidance 
and smooth navigation. Upon receiving a navigation target, move_base first invoked the global path 
planner (Dijkstra’s algorithm) to generate an optimal route on the global costmap. Subsequently, the 
local path planner employed the dynamic window approach (DWA) algorithm to dynamically adjust the 
robot’s trajectory in response to real-time environmental changes. 
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As illustrated in Fig. 16, the autonomous navigation experiment proceeded as follows: The robotic 
arm visually grasped the target package. The mobile platform followed predefined navigation 
waypoints, automatically generating global and local paths. move_base computed feasible linear and 
angular velocities, transmitting them via the ROS topic /cmd_vel to the low-level controller, driving the 
robot along the planned trajectory. The red arrow in Fig. 16 indicates the robot’s initial heading 
direction. The trajectory of the red arrow’s variation reflects real-time adjustments in movement and 
orientation. 

The experimental results demonstrate that when navigation waypoints comply with the costmap 
constraints, the system achieves autonomous transport by placing the grasped target into the designated 
collection bin. This experiment demonstrates the mobile robot’s autonomous transport capabilities using 
the Gmapping SLAM algorithm. The system integrates data from LiDAR, odometry, and IMU sensors 
to construct and update a 2D occupancy grid map in real-time while simultaneously localizing the robot 
within this map. Mobility tests demonstrate a 96% success rate in autonomous transportation, with 
navigation and localization accuracy maintained at ±3 cm. 

 

 
Fig. 16. Autonomous navigation experiment with Gmapping SLAM 
 
6. CONCLUSIONS 

 
This study established an integrated robotic test platform to investigate core technologies in mobile 

grasping and autonomous navigation. The principal findings are as follows: 
(1) The integrated robotic system was developed using Ubuntu 20.04 and the open-source ROS 

Noetic framework. The platform comprises an intelligent differential wheel mobile platform, an FR5 
series 6-DOF collaborative robotic arm, a two-finger gripper, an RGB-D depth camera, etc. The robotic 
arm is located on the mobile robot, and it can be flexibly moved along with the robot to realize the visual 
grasping, navigation and transportation of specific objects. 

(2) We addressed the computational limitations of conventional YOLO algorithms for mobile 
deployment by implementing our previously developed lightweight YOLOv8n-SCS-CE network on an 
edge device. The system achieved efficient detection of common logistics box-shaped parcels through 
bidirectional ROS topic communication between the host machine and virtual machine. This distributed 
architecture implements YOLOv8-based target detection on the remote virtual machine while reserving 
visual grasping and motion control functions for the host machine, thereby significantly reducing the 
host’s computational resource consumption. 

(3) We developed an autonomous navigation system based on Gmapping SLAM that enables the 
mobile manipulator to perform lightweight YOLOv8 visual grasping and autonomous transportation 
tasks. The system achieved a success rate of approximately 66% in object grasping tasks, a 96% success 
rate in indoor autonomous navigation, and a positioning accuracy of ±3 cm. This integrated solution 
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effectively addresses three key challenges in indoor parcel handling: intelligent detection, YOLOv8 
grasping, and autonomous transportation. Future work will further improve system performance by 
focusing on optimizing critical grasping parameters, including end-effector pose accuracy, grasping 
target recognition, and object approach trajectories. 
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