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USING THE LIGHTWEIGHT YOLOVS8 SYSTEM FOR VISUAL
DETECTION, LOGISTICS PACKAGE GRASPING, AND AUTONOMOUS
NAVIGATION FOR MOBILE MANIPULATORS

Summary. In recent years, the global industrial production and manufacturing paradigm
from mass production has continued to shift to customized production. Enterprise order
processing is also increasingly showing strong timeliness, variety, small batch, and batch
characteristics. The market demand for highly flexible robotic automated production lines is
also continuing to grow. Mobile manipulator is a new type of robot that integrates two
functions of mobile robots and robotic arms, which can plan routes, navigate accurately, avoid
obstacles, and identify, sort, grasp, and transport items. It is widely used in logistics and
warehousing, factories, indoor exhibition halls, etc., which can save the cost of manpower,
improve efficiency, and create differentiated competitiveness. Despite its promising
application, it also faces some problems, especially in the cooperative operation of the mobile
platform and robotic arm. Understanding how to realize vision-based target intelligent
recognition and grasping is still a current research challenge. In this paper, we build a mobile
manipulator platform, deploy and verify a YOLOv8n-SCS-CE lightweight detection network
proposed in the previous stage (which can detect common logistics parcels), and test the
robot’s autonomous mobile grasping of parcels and autonomously navigating to the target
place. The test demonstrates that it can utilize the improved YOLOvVS to achieve intelligent
grasping and autonomous navigation, thereby solving the challenges of intelligent grasping
and autonomous transportation for indoor mobile manipulators. This study provides key
technologies and methodologies for the intelligent grasping and manipulation capabilities of
mobile manipulators.

1. INTRODUCTION

A mobile manipulator, a highly flexible robot with multi-scene adaptability, typically consists of a
vision sensing module, a multi-axis robotic arm, a mobile platform, and an end-effector. This system
enables object recognition, inspection, grasping, and other task-specific functions. Its core technological
architecture integrates artificial intelligence, mobile manipulation, sensor fusion, and
localization/navigation technologies [1-3].

The research and development of mobile manipulators began abroad earlier, resulting in relatively
mature technologies. Notable international examples include the PR2 robot developed by Willow
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Garage (USA); HERB, developed by Intel Pittsburgh Lab and Carnegie Mellon University; the Fetch
robot by Fetch Robotics (USA); Stretch, Boston Dynamics’ mobile warehouse automation solution; and
KUKA’s (Germany) KMR iiwa robot for mission-critical industrial applications. Although China
started later in this field than other countries, progress has been rapid. Key domestic brands include
HSCRS, China’s first intelligent hybrid collaborative robot, launched by Shenyang Siasun Co., Ltd;
Daystar robot, independently developed by Lenovo Corporation; STAR robot, developed by Shenzhen
Han’s Robot Co., Ltd; and Scara hybrid robot by RobotPhoenix LLC. These mobile manipulators can
be applied across various fields, including logistics and warehousing, electronics manufacturing, food
processing, and pharmaceutical production [4-6].

Composite mobile robots have a broad application prospect, but they also face some problems.
Substantial research has been carried out internationally on fixed robotic arm visual grasping
technology, YOLO detection network algorithms, and autonomous navigation of mobile robots [7-11].
However, these studies have primarily focused on aspects such as the lightweight design of YOLO
algorithms, the visual grasping for robotic arms, autonomous navigation, and collaborative control.
There remains insufficient research on integrated YOLO-based visual grasping and navigation control
for mobile manipulators as a complete system. In particular, several technical challenges and bottlenecks
persist in areas like lightweight YOLO recognition algorithms, eye-hand coordinated grasping, and
autonomous navigation control [12, 13]. Achieving vision-based efficient target recognition,
autonomous mobile grasping, and intelligent navigation for mobile manipulators remain a current
research hotspot.

To address these challenges, this study develops a mobile manipulator platform that combines
advanced perception, manipulation, and navigation capabilities. Using the detection and grasping of
common logistics box-shaped parcels as a case study, the platform integrates three key technological
components: our previously developed lightweight YOLOv8n-SCS-CE detection algorithm [14] for
robust object recognition; a vision-guided robotic arm grasping system for precise manipulation; and
LiDAR-based autonomous navigation technology for environment-aware mobility. The synergistic
combination of these technologies provides a practical solution for logistics automation applications
requiring both precise manipulation and mobile transportation capabilities.

2. CONSTRUCTION OF A MOBILE MANIPULATOR EXPERIMENTAL PLATFORM
2.1. Components of the Test Platform

The mobile manipulator platform depicted in Fig. 1 has been developed to meet the needs of indoor,
warehousing and logistics fields, overcome the limitations of traditional fixed-base robots and mobile
AGYV platforms, and improve the flexibility, safety and reliability of a variety of processes. The
experimental platform comprises the following core components: a circular indoor intelligent mobile
base (SHANSU Intelligence Co., Ltd.), an FRS collaborative robotic manipulator (FAIR Innovation
Robot Systems, Suzhou), a two-finger parallel gripper (DaHuan Co., Ltd.), an Intel RealSense D435i
RGB-D camera, and a 2D LiDAR sensor. The platform measures 700x545%500 mm (LxWxH), and it
integrates a six-axis robotic arm with a 922-mm workspace, complemented by an autonomously
navigating chassis. Its ROS-based control system offers extensive sensor interfaces and API options to
streamline secondary development and system integration.

(1) Collaborative Robot Arm

The FAIR FRS collaborative robot from the FR series was selected for this application. This system
features an integrated robot button box and compact control box, offering an extensive working envelope
within a minimal footprint. Its compatibility with diverse end-effectors and sensor packages ensures
optimal adaptability to meet all project specifications. The FRS5 robotic arm utilizes the frcobot ros
software package to create a TCP client-server communication channel with the robot’s state feedback
system. This implementation facilitates the continuous real-time data acquisition of the robot’s
operational status parameters. The FRS features a 5-kg payload capacity, a total weight of 20.6 kg, and
an exceptional £0.03-mm repeatability.
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(2) Autonomous Mobile Platform

The mobile robot chassis from SHANSU Intelligence was selected; this system integrates multiple
sensors to facilitate environment perception and autonomous navigation. The system incorporates the
WLR-716-Mini, a high-precision 2D LiDAR, primarily employed for environmental mapping, obstacle
detection, and simultaneous localization and mapping (SLAM) applications. The IMU Brick 2.0 is a
high-performance inertial measurement unit (IMU) that integrates a three-axis accelerometer,
magnetometer (e-compass), and gyroscope, capable of measuring motion in nine degrees of freedom.
The mobile chassis adopts two-wheel differential speed, built-in odometer, LIDAR and IMU, with high-
precision environment sensing, motion state monitoring, and autonomous navigation capability for the

mobile manipulator.
K 3
FRS robotic arm

Mobile platform

Fig. 1. Composition of mobile manipulator

(3) Intel RealSense D435 Camera
The Intel RealSense D435 binocular stereo camera was chosen to process color images, recognize,
and (stereo vision) compute depth information, and the associated driver ROS package was provided.
As shown in Fig. 2, its forward sensing array is distributed in a horizontal line configuration as follows:
the first and third from the left are infrared sensors (IR stereo camera), the second from the left is an
infrared projector, and the fourth from the left is a color camera (i.e., a color sensor).

Fig. 2. Intel RealSense D435 camera

(4) End Effector
The DaHuan AG95 articulated adaptive electric two-finger gripper was selected for its robotic arm
compatibility. Its compact structural design enables adaptive grasping of workpieces with varying
geometries, ensuring stable manipulation of diverse objects. AG95 has the features of plug-and-play,
drive, and control as a high-precision adjustable gripping force, double gripper control, interchangeable
fingertips, fast installation, etc., and was combined with the robotic arm FRS to enhance the flexibility
of the gripping system.

2.2. Overall Design of Control System

The experimental platform operates on an Ubuntu 20.04 LTS environment with ROS Noetic
framework integration. System control is centralized through an industrial-grade mini-PC, which
orchestrates all hardware modules via unified coordination and real-time scheduling protocols. The
primary development languages are C++ and Python. The platform system architecture encapsulates
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various functional units, including the robotic arm, depth camera, LIDAR, Gmapping module, and end
effector, as independent ROS nodes seamlessly integrated into the robot’s Ubuntu operating
environment. These nodes communicate via ROS topics to receive information, which is then converted
into hardware commands to ultimately drive the robotic arm in executing target tasks.

The system employs multiple communication protocols to enable efficient inter-module
coordination. The chassis differential motor communicates with the main control system through CAN
bus to realize the motion control and state feedback of the chassis. the robotic arm adopts Ethernet
(TCP/IP) communication to support high-frequency control and precise positioning. The gripper
interacts with the main control system through the serial port for grasping and releasing. Environmental
perception is achieved through an Intel RealSense D435 RGB-D camera, interfaced via USB 3.0 Gen 1,
providing registered color-depth image pairs and dense 3D point clouds. These hardware modules are
encapsulated as independent nodes in the ROS noetic system, and each node exchanges data and
transmits control instructions through topics, etc. The master control system uniformly manages the
collaborative scheduling of all the hardware to realize the intelligent operation of the robot. The overall
control system is shown in Fig. 3.

RGB-D LiDAR IMU

Color and depth image Mapping

Yolo-ROS

YOLOv8n- .
SCS-CE | deployment @ ROS topic
; —_— s || - >
dotb']?:t c—-————- Onboard computer
etection

Edge device YOLO object detection

Grasp pose Grasping Comroicommand

B

Motion control

—
CTra_ie&:tory planning A

Robot arm Robotic arm controller End effector Mobile platform

Fig. 3. Composition of the overall control system
3. KEY TECHNOLOGIES FOR THE MOBILE GRASPING OF MOBILE MANIPULATORS

The mobile grasping capability of a mobile manipulator combines the precision grasping of a
robotic arm with the mobility provided by a mobile chassis. This integration primarily encompasses
several key aspects: a YOLO lightweight target detection network, visual calibration, and autonomous
navigation (SLAM).

3.1. YOLOV8n-SCS-CE Lightweight Detection Algorithm

YOLOVS8, when used in warehouse logistics field detection, requires a large target detection model
and computational complexity, thus leading to a large amount of computation, resulting in a slow
operation speed, which makes it difficult to meet the demand for deployment in embedded or mobile
devices. The authors of this paper have previously proposed a YOLOv8n-SCS-CE target detection
algorithm, which improves the model feature extraction capability while maintaining a low
computational complexity. Its network structure is shown in Fig. 4, with the changes mainly
concentrated in the backbone part and neck parts, which are mainly used for detecting common logistics
packages [15].

In the backbone network part, conventional convolution is first used to capture the initial spatial
features and downsample the feature maps, and then the proposed SCS network structure is introduced
to optimize the data flow method and improve the computational efficiency through the strategies of
channel equalization, optimization of channel shuffle, reducing the amount of 1x1 convolutional
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computation, and reducing the cost of memory access. Through these optimizations, the SCS structure
effectively reduces the computational burden of the YOLOVS backbone network. In the neck part, the
C2f module of the original YOLOVS is replaced by the C2f ECA module, which further improves the
feature extraction capability while controlling computational complexity. The main optimization points
of C2f ECA include the incorporation of efficient channel attention, which avoids additional
computational burdens while improving the feature selection capability through local cross-channel
information interactions compared to the traditional CBAM or SE attention mechanisms.

SCS-Backbone ) Head

Neck
@84,1) | l » C2f » Head3

scs | Upsamle

| (3842)
S —
SCS ~ Conv
92,1) |
SCs

922) | C2f ECA

C2f ECA » Head2

scs | Il

Upsamle

scs | Cony

J@TEL T - -
) C2f ECA > Headl

640x640x3

Fig. 4. YOLOv8n-SCS-CE lightweight detection network
3.2. Robotic Eye-on-Hand Calibration
3.2.1. Camera Intrinsic Calibration

First, the depth camera is fixed on the end rotary joint of the robotic arm to ensure that the
coordinate system of the camera to acquire data can be consistent with the default coordinate system
direction of the actuator at the end of the robotic arm to facilitate the coordinate transformation between
the camera and the robotic arm. Then, the camera is activated to acquire the image-aligned RGB scene
and depth map.

This experiment uses MATLAB’s own toolbox (Camera Calibrator) for calibration, the advantages
of which are the accuracy of the calibration and the simplicity of the operation process in practice. We
employed a 12x8 checkerboard grid (comprising 11x7 internal corner points) as the calibration target,
with each square measuring 25 mm X 25 mm. The board was rotated while keeping the camera stationary
to capture a sufficient number of images. A total of 80 groups of images were collected for the same
calibration plate in different attitudes, and the camera was calibrated by importing these images into
MATLAB and extracting the corner points of the images using Camera Calibrator. During the
calibration process, the system calculates the average calibration error for the left and right images, as
well as the simulated attitude between the camera and the calibration target. Images with large errors
are then removed, leaving 40 valid image pairs. This information can be visualized graphically, as shown
in Figs. 5 and 6.

The end of calibration yields the camera intrinsic matrix [607.9263 0 0; 0 607.4232 0; 315.0026
251.6894 1.0000], the translation vector of principal point coordinates [-88.0890 -184.4831 608.3623],
and the rotation matrix [0.9988 -0.0406 -0.0290; 0.0405 0.9992 -0.0022; 0.0291 0.0011 0.9996].
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3.2.2. Eye-on-Hand Calibration

Hand-eye calibration experiments are used in robotics and computer vision to determine the
transformation between a robot’s end-effector and a camera mounted on it. This calibration is crucial
for tasks like visual servoing and object manipulation.

Let the transformation from the camera coordinate system to the joint coordinate system at the end
of the robotic arm be TZn', the transformation from the joint end coordinate system to the base
coordinate system be T2%5¢, and the position of the object in the camera coordinate system be Poseqn,.
Then, the position of the object in the base coordinate system can be obtained as

Posepgse = Tfﬁff * Tegm * Posecam - (1)

During calibration, to keep the object’s pose unchanged, the robot arm’s base is not moved, that
Poseyp e remains unchanged. In order to ensure the calibration effect, n groups of poses are generally
selected for calibration, from which » position and orientation transformation relations can be derived

Posepase, = Tarme * Tém! * Posecqm, (n=12,..,n) )
where T2%€ can be acquired using the robot’s teaching pendant, Pose,,,, can be obtained by the
camera calibration, and T4" is an unknown transformation to be solved, but it remains constant across
all n positions during hand-eye calibration. Based on this condition, it is possible to obtain Eq. (3):

base arm — — 7Tbase arm
Tarm1 * Tcam * Posecam1 e Tarmn * Tcam * Posecamn (3)
Any set of equations can be transformed to obtain the equation that
base ~1 base arm — _ parm -1
Tarmz * Tarm1 * Tcam e Tcam * Posecamz * Posecaml (4)
-1 _
Let A = TS84 * TH%E, B = PoSecqm, * Posecam, *» X = Tént. Then, we get AX=XB,

where both 4 and B are known, solving for the unknown transformation X. Hand-eye calibration is
performed using MATLAB’s built-in Camera Calibrator toolbox. To ensure calibration accuracy, the
calibration plate remained stationary within the camera’s field of view throughout the process. The
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robotic arm is systematically repositioned to capture 15 distinct image sets, optimizing pose coverage
for robust parameter estimation. This multi-image acquisition strategy enhances calibration precision by
mitigating measurement noise and improving spatial constraint resolution. The experimental setup is
illustrated in Fig. 7.

Fig. 7. Eye-on-hand calibration

Here are several professionally refined versions of the hand-eye calibration results presentation:
rotation matrix R=[0.9774 0.2073 0.0422; -0.1993 0.9691 -0.1451; -0.0710 0.1334 0.9885]; translation
vector =[-72.8437 -5.9962 586.1100] (units: mm).

After the arm hand-eye calibration, according to the obtained rotation matrix and translation vector,
which can be deduced from the coordinate transformation matrix, the main program publishes
coordinate system conversion, converting the object to the camera coordinates, and then to the object to
the robot arm coordinates, enabling the robot arm to grasp the object.

3.3. Autonomous Navigation via Gmapping SLAM

Gmapping SLAM map construction for a mobile chassis requires LIDAR, odometer, IMU, etc.
Gmapping is a SLAM algorithm based on 2D LiDAR using the Rao-Blackwellized particle filters
(RBPF) algorithm to complete 2D raster map construction. Its core problem is that it struggles with
simultaneous robot position estimation and environment map construction. Accurate position estimation
relies on high-quality maps, while high-quality map construction relies on accurate position estimation,
making SLAM a complex computational problem. Gmapping shows the advantages of high
computational efficiency, stable accuracy, and a lower requirement for LIDAR frequency in small-scale
environments.

Fig. 8 shows the autonomous navigation experimental environment, which uses a virtual machine
to remotely log in to the host computer of the robot; open the LIDAR node, mobile chassis drive node,
and odometer node; run the Gmapping map building node; and run the Rviz visual interface, which can
be viewed in real time during the map building process. The user can use the handle to move the robot
slowly to complete the construction of the map of the entire environment and then save the map. When
autonomous navigation is required, the navigation node needs to be turned on, the built map file needs
to be loaded, and Rviz needs to be opened on the local machine. The 2D Pose Estimate is used to adjust
the initial pose to the initial position of the mobile manipulator in the field at this time, with the arrow
pointing in the direction of the robot’s x direction. Ensure that the laser scanning obstacle data and the
map obstacles basically coincide, use 2D Nav Goal to set the target point and target posture for robot
navigation, and the robot will automatically plan a feasible path to move to the target point
autonomously.
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Fig. 8. Mapping and map loading tests

4. MOBILE MANIPULATOR PROGRAMMING FRAMEWORK DESIGN

The mobile manipulator was developed on the UBUNTU 20.04 operating system with ROS Noetic,
a widely used open-source framework that provides integrated communication mechanisms, tool
packages, and other essential functionalities for robotics development. The system implementation
employs C++ and Python as primary programming languages, with the mobile chassis and FR5 robotic
arm control functions developed using the ROS Movelt framework. As shown in Fig. 9, all SRC source
files within the catkin package are fully accessible and modifiable through VS Code.

The architecture incorporates multiple customized ROS packages (Fig. 10) organized into 10 core
functional modules: (1) battery management system’ (2) gripper modeling and control subsystem’ (3)
robotic arm driver for hardware communication and operations’ (4) mobile chassis 3D modeling and
navigation control package’ (5) pointcloud grasp application layer (containing move_group.cpp and
detect.py)’ (6) RGB-D camera driver with integrated calibration parameters’ (7) ROS-control hardware
interface simulator and templates’ (8) LiDAR driver package and SDK’ (9) custom communication
packages (topics/messages/actions)’ and (10) IMU driver package and SDK. This modular design
ensured robust system integration while maintaining flexibility for future enhancements.

4.1. Autonomous Mobile Grasping Program Design for the Mobile Manipulator

The mobile grasping test of a mobile manipulator involves the cooperative operation of multiple
functional nodes to realize the detection, path planning, and grasping operation of target objects. This
subsection mainly introduces the program development of the move group node. The move group node
relies on the Movelt motion planning framework, which can realize the functions of path planning, path
execution, inverse kinematics and Cartesian path. Its main program, move group.cpp, needs to
introduce header files and initialize robotic arm control parameters. To implement mobile grasping
capabilities, the user defines a C++ grasp demo class for encapsulating the complete grasping pipeline.
This object-oriented design provides a clean interface for programmatic control of the grasping process.
In C++, the grasp demo class contains some member functions and variables, of which the class
constructor is as follows:

grasp_demo::grasp_demo (ros: NodeHandle &nh):move group (PLANNING GROUP).

In the grasp demo class, where the armGrasp() function is used to execute the complete grasp
process (as shown in Fig. 10), the grasp_demo class contains the following core variables and functions:

(1) ros: init(argc, argv, arm_grasp_demo): initialization function, where argc indicates the number
of parameters, argv indicates the parameter list, and arm_grasp_demo indicates the ROS node name;
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(2) ros: NodeHandle nh: create ROS handle, nh is responsible for managing ROS network
communication, such as topic subscription and publication;

(3) ros: AsyncSpinner(4): create an asynchronous callback manager and allocate 4 threads for
processing ROS callback functions to improve system responsiveness;

(4) spinner.start(): start the callback processing to ensure uninterrupted message delivery;

(5) gototarget(nav_goal): set the robot’s autonomous navigation goal to ensure that it moves to the
grasping position;

(6) armGrasp(): responsible for executing target detection, robot arm motion planning, grasping
and placing operations.

The main logic of the main program mainly includes the steps of ROS node initialization,
asynchronous callback processing, autonomous navigation, and grasping execution, as shown in Fig. 11.
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class grasp_demo ros::NodeHandle private_nh_;
{ private: ros::Subscriber nav_res_sub_, target_sub_;
public: ros::Publisher gripper_pub_, arm_pose_pub_, arm_joint_pub_, arm_do_pub_;

grasp_demo(ros::NodeHandle &nh); ros::Publisher detect_pub_;

~grasp_demo(); ros::Timer timer_;

void graspObject();

MovebaseGoalClient *move_client_;

void GripperContrl(ros::Publisher open_gripper, float position_);

void ArmDoControl(ros::Publisher arm_do_pub, int do_num, bool value);

void NavResultCallback(const move_base_msgs::
MoveBaseActionResult::ConstPtr& nav_result);

void TagetCallback(const geometry_msgs::PoseStamped::ConstPtr& target_msg);

bool goToTarget(move_base_msgs::MoveBaseGoal goal);

void timerCallback(const ros::TimerEvent &event);

tf:: TransformListener listener_;

std::string nav_text_, target_link, target_linkl;

moveit::planning_interface::MoveGroupInterface move_group_;

const robot_state::JointModelGroup* joint_model_group;

Fig. 10. Design of a grasping class in C++

ros::ServiceServer arm_joint_control_srv_, arm_grasp_srv_;
geometry_msgs::PoseStamped current_pose_;
std_msgs::Float32MultiArray current_joint_;
std::vector<double> init_position_; ready_position_; put_positionl_; put_position2_;
void armGrasp( ros::Publisher detect_pub,
moveit::planning_interface::MoveGrouplnterface *move_group,
std::vector<double> init_position, ready_position, put_positionl, put_position2,
std::string arm_name, int max_object_num, int timeout);
bool ArmJointcontrolSrv(pointcloud_grasp::ArmJointControl::Request &req,
pointcloud_grasp::ArmJointControl::Response &res);
bool ArmGraspSrv(yikun_msgs::ComWithWeb::Request &req,
yikun_msgs::ComWithWeb::Response &res);

moveit::planning_interface::MoveGrouplnterface *get_move_group(); };
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int main(int argc, char** argv) grasp.goToTarget(nav_goal);

{ nav_goal.target_pose.pose.position.x = 2.00;
ros::init(argc, argv, "arm_grasp_demo"); nav_goal.target_pose.pose.position.y = 1.20;
ros::NodeHandle nh; nav_goal.target_pose.pose.position.z = 0.0;
ros::AsyncSpinner spinner(4); nav_goal.target_pose.pose.orientation.x = 0.0;
spinner.start(); nav_goal.target_pose.pose.orientation.y = 0.0;
grasp_demo grasp(nh); nav_goal.target_pose.pose.orientation.z = -0.069;
move_base_msgs::MoveBaseGoal nav_goal; nav_goal.target_pose.pose.orientation.w = 0.997;
nav_goal.target_pose.header.stamp = ros::Time::now(); | grasp.goToTarget(nav_goal);
nav_goal.target_pose.header.frame_id = "map"; grasp.armGrasp(grasp.detect_pub_,
nav_goal.target_pose.pose.position.x = 2.0; grasp.get_move_group(),
nav_goal.target_pose.pose.position.y = 1.20; "object_link", "object_link1", grasp.init_position_,
nav_goal.target_pose.pose.position.z = 0.0; grasp.ready_position_, grasp.put_position]_,
nav_goal.target_pose.pose.orientation.x = 0.0; grasp.put_position2_, "RM", 1, 50);
nav_goal.target_pose.pose.orientation.y = 0.0; ros::waitForShutdown();
nav_goal.target_pose.pose.orientation.z = -0.069; return 0;
nav_goal.target_pose.pose.orientation.w = 0.997; }

Fig. 11. Main control architecture for move group.cpp

4.2. Design of Lightweight YOLOv8 Network Target Detection System
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Fig. 13. Robot system subscribes to YOLO topic data

(1) Install a VMware virtual machine on a laptop, allocate 8G of memory to the virtual machine,
and set 40G of disk capacity. To install Ubuntu20.04, ROS noetic version, the deployment of YOLO
into the need to install Anaconda, create virtual environments, install Ultralytics and PyTorch libraries.
Next, install ROS-related dependencies, such as the dependency libraries installed by rospkg, etc., to
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ensure that the trained weights can be deployed and used in the ROS environment. For the robot’s main
controller, a laptop serves as an edge device to process real-time YOLO-based image detection
algorithms.

(2) Store the pre-trained weights file into the ROS workspace and name it best.pt. Write a ROS
node to call the YOLOVS lightweight model for inference. Publish image messages from the depth
camera to ROS for topic communication. First, subscribe to the /camera/image raw topic to get real-
time images. After processing, the /yolo detections topic is published to send the detected target
coordinates to the robot control system, which subscribes to the /yolo_detections topic to parse the
detected target position and plan the grasping.

(3) Open the demo_hardware.launch file in the function package fr5 moveit config so that the
mobile manipulator can be launched, and under the workspace launch the rs_rgbd. launch camera node
of the realsense2 camera function package; the dh gripper driver function package’s dh_gripper.
launch node; the pointcloud grasp package’s move group demo node and color_detect.launch node.
As shown in Figs. 12 and 13, after starting the corresponding nodes and loading the detection model,
the remote VM successfully runs the YOLOv8n-SCS-CE lightweight detection algorithm after two-way
topic communication, and the master and slave detect the target parcel in real time.

5. COMPREHENSIVE EXPERIMENT OF MOBILE GRASPING AND AUTONOMOUS
NAVIGATION
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Fig. 14. Visual grasping pipeline for target objects

The target parcel recognition and grasping test procedure (Fig. 14) operates as follows. First, the
system acquires aligned RGB and depth images via the depth camera, then publishes the visual
calibration parameters through a TF-generated .yaml file. It subsequently calculates the target object’s
centroid coordinates derived from RGB, depth value, and rotational orientation. These parameters are
processed by the programmable move group interface, which leverages Movelt for kinematic motion
planning. Finally, the planned trajectory is executed via ROS control, guiding the robotic arm’s end-
effector to the designated grasp pose.

5.1. Mobile Manipulator Grasp Tests

The purpose of the tests was to evaluate the mobile grasping performance of the mobile
manipulator. The remote virtual machine subscribed to the camera image topic published by the host,
while simultaneously activating the lightweight YOLOvS detection node. After image processing, the
robot host received the target detection results output by the lightweight YOLOv8 node on the virtual
machine via the topic. For each detected target package, the center coordinates (x, y) of the bounding
box were extracted, and the rotation angle of the gripper was determined based on the principal axis
direction of the box-shaped package in the image. The pixel coordinates of the target’s center point were
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read to obtain the corresponding depth value z in the depth map; in this way, the complete spatial position
(x, y, z) of the target needed to construct the grasping information was acquired. In the move group
program, the target points for mobile grasping—including the initial pose, recognition pose, grasping
pose, placement pose, and final pose—were predefined. During the mobile grasping process, the robot
automatically planned its path and moved according to the preset navigation points.

Small box-shaped packages were selected to validate the mobile manipulator’s grasping
performance. The image resolution during the grasping process was set to an image resolution of
640x480. The gripper’s control function was configured with a position value of 950, a grip force of
100, and a speed set to the maximum range of 100 in the registers.

The robot’s camera node was activated to capture real-time images, and a pre-trained weight model
was used for object detection. The detection results, combined with the 3D coordinates obtained from
depth information, were transmitted to the robot control system via the tf package. After completing
the grasping task, the robot moved to the designated placement location and then returned to its initial
position. In this study, the target grasping process was simplified to a 2D planar grasping problem.
Throughout the experiment, the camera remained within the optimal viewing range of the box-shaped
package, and the gripper performed the grasping operation vertically from above. The experimental
process is illustrated in Fig. 15.

Fig. 15. Visio-based mobile manipuation fd;‘pdréel grasping

Due to the lack of GPU acceleration support on the virtual machine, the system exhibited
suboptimal real-time performance, achieving a grasping success rate of 66%. Subsequent studies will
employ higher-computing-capacity devices for validation and analysis.

5.2. Autonomous Navigation Testing Using Gmapping SLAM

The mobile robot utilized a LiDAR, odometry, and IMU sensors, employing the particle filter-
based SLAM algorithm to construct a 2D grid map from collected laser scans and pose relationship data.
In ROS, move base served as the core node for autonomous navigation, integrating both global and
local path planning to enable self-guided robot movement. During autonomous navigation, the global
costmap facilitated global path planning by computing an optimal route from the starting point to the
target within the known map. It avoided static obstacles while minimizing travel distance. The local
costmap handled local path planning by dynamically detecting real-time environmental changes (e.g.,
moving obstacles). It continuously adjusted the trajectory during execution to ensure obstacle avoidance
and smooth navigation. Upon receiving a navigation target, move base first invoked the global path
planner (Dijkstra’s algorithm) to generate an optimal route on the global costmap. Subsequently, the
local path planner employed the dynamic window approach (DWA) algorithm to dynamically adjust the
robot’s trajectory in response to real-time environmental changes.



Using of lightweight YOLOvVS system for visual detection... 125

As illustrated in Fig. 16, the autonomous navigation experiment proceeded as follows: The robotic
arm visually grasped the target package. The mobile platform followed predefined navigation
waypoints, automatically generating global and local paths. move base computed feasible linear and
angular velocities, transmitting them via the ROS topic /cmd_vel to the low-level controller, driving the
robot along the planned trajectory. The red arrow in Fig. 16 indicates the robot’s initial heading
direction. The trajectory of the red arrow’s variation reflects real-time adjustments in movement and
orientation.

The experimental results demonstrate that when navigation waypoints comply with the costmap
constraints, the system achieves autonomous transport by placing the grasped target into the designated
collection bin. This experiment demonstrates the mobile robot’s autonomous transport capabilities using
the Gmapping SLAM algorithm. The system integrates data from LiDAR, odometry, and IMU sensors
to construct and update a 2D occupancy grid map in real-time while simultaneously localizing the robot
within this map. Mobility tests demonstrate a 96% success rate in autonomous transportation, with
navigation and localization accuracy maintained at £3 cm.
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Fig. 16. Autonomous navigation experiment with Gmapping SLAM
6. CONCLUSIONS

This study established an integrated robotic test platform to investigate core technologies in mobile
grasping and autonomous navigation. The principal findings are as follows:

(1) The integrated robotic system was developed using Ubuntu 20.04 and the open-source ROS
Noetic framework. The platform comprises an intelligent differential wheel mobile platform, an FR5
series 6-DOF collaborative robotic arm, a two-finger gripper, an RGB-D depth camera, etc. The robotic
arm is located on the mobile robot, and it can be flexibly moved along with the robot to realize the visual
grasping, navigation and transportation of specific objects.

(2) We addressed the computational limitations of conventional YOLO algorithms for mobile
deployment by implementing our previously developed lightweight YOLOv8n-SCS-CE network on an
edge device. The system achieved efficient detection of common logistics box-shaped parcels through
bidirectional ROS topic communication between the host machine and virtual machine. This distributed
architecture implements YOLOv8-based target detection on the remote virtual machine while reserving
visual grasping and motion control functions for the host machine, thereby significantly reducing the
host’s computational resource consumption.

(3) We developed an autonomous navigation system based on Gmapping SLAM that enables the
mobile manipulator to perform lightweight YOLOVS visual grasping and autonomous transportation
tasks. The system achieved a success rate of approximately 66% in object grasping tasks, a 96% success
rate in indoor autonomous navigation, and a positioning accuracy of #3 cm. This integrated solution
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effectively addresses three key challenges in indoor parcel handling: intelligent detection, YOLOVS
grasping, and autonomous transportation. Future work will further improve system performance by
focusing on optimizing critical grasping parameters, including end-effector pose accuracy, grasping
target recognition, and object approach trajectories.
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